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Darwin magnetic interaction energy and its macroscopic consequences
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In metals and plasmas the Coulomb interaction between mobile charged particles is screened. The main
long-range interaction between the particles is then the magnetic interaction. When radiation is negligible the
simplest way to study this interaction is to use the Darwin approximation. In this way one retains a conserva-
tive finite degree of freedom problem. We review the derivation of the Darwin Lagrangian and present careful
derivations of the corresponding Hamiltonian in various limits. Our results go beyond those of previous authors
in several respects. We point out some consequences of the magnetic interaction energy for the dynamics of
charged particles with screened Coulomb interaction. Applications to metallic conduction electrons and to
plasmas are considered.

PACS numbes): 52.25.Kn, 41.20.Gz, 74.20z, 98.62.En

[. INTRODUCTION small parametev/c to second order. While this certainly is
one way of viewing it, the conventional way, in fact, its
The Coulomb potential energy is known to describe theactual validity goes somewhat beyond this. High speeds in
interaction of charged particles with sufficient accuracy for athemselves need not cause radiation since radiation comes
wide range of applications, especially in atomic, molecularfrom accelerated dipoles. The Darwin Lagrangian hpest-
and condensed matter physics. In cases where radiation is &flilean [12] character and it can be regarded as implying
importance the electrostatic Coulomb treatment does not sufMaxwell's equations without time derivatives of the trans-
fice and must be replaced by a full treatment of the electroverse electric field13,14.
magnetic field obeying Maxwell's equations. It is frequently ~ The wide range of applicability of the Darwin Lagrang-
the case, however, that radiation is not of importance, evet@n, however, does not extend to its approximate Hamil-
though the electrostatic approximation is not good enoughonian as derived by Darwin. The Darwin interaction energy
For all these cases one may use the Darwin approximatioﬁeed not be small even if the individual terms in it are small.
[1,2]. This approximation, which goes beyond the electro-Ther ! distance dependence and the absence of the screen-
static one in giving a correct description of magnetic effectsing effect that limits the Coulomb interaction mean that it
while retaining a finite degree of freedom conservative proban integrate to considerable amounts, as pointed out by
lem, seems to be fairly unknown in spite of its wide range ofTrubnikov and KosacheM 5]. Under such circumstances the
applications. Only a few advanced textbogBs-5] mention  first-order (or simplified Hamiltonian, which is usually
it at all. In atomic physics the corresponding physical effecfound in the literature, is not qualitatively correct. Apart
is described by a perturbation to the Hamiltonian that somefrom v/c there is thus also the important dimensionless pa-
times is called the Brefi6,7] term. This term, however, is of rameterNR,/R, whereN is the number of particle}, the
purely classical origin and is identical to the Darwin mag-classical electron radius, arRithe length scale of the sys-
netic interaction energy; sdé&]. tem. When this parameter is not small higher-order terms
Under what circumstances can one expect the Darwifinust be included in the Hamiltonian. One of our main results
magnetic interaction to be responsible for observable physiis an expression for the second-order term in the Hamiltonian
cal effects? In atomic physics the interaction represents Ed. (63) that becomes exact in the nonrelativistic limit.
well established perturbation together with several other, We thus first carefully derive various expressions for the
purely quantum mechanical perturbatigfrem spin and sta- Hamiltonian corresponding to the Darwin Lagrangian. Exact
tistic). Otherwise neutral systems, such as metals and plasas well as approximaterelativistic (as well as nonrelativ-
mas, where there are moving charged particles but in whickstic) expressions are given. The main result is the nonrela-
the Coulomb interaction is screened, should be of specidivistic second-order Hamiltonian
interest2]. In such systems the magnetic Darwin interaction ) )
will be the dominating long-range interaction. The reason Hop=S pa AL 4 di AL AL | (1)
that very few authors in the past have considered the ap- 7 P2~ 4 | 2m, 2micp' " 2mc? ) o]
proach taken in this paper is probably that the concepts of
magnetic energy and magnetic force are quite subtle andhere
have caused much conceptual difficulty and speculation
[8—11]. It is the purpose of this paper to clear up some of this ALZS a;ilp;+(pj- &j)e;]
confusion and to advocate the view that the magnetic inter- O & 2mjcr;;
action energy is responsible both for low-temperature super-
conductivity and for the ubiquity of cosmic magnetic fields. The Hamiltonian that is normally used does not have the last
We first review the derivation of the Darwin Lagrangian. term and thus predicts that the magnetic energy goes to mi-
It is usually considered to result from an expansion in thenus infinity as the volume containing a constant current dis-
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tribution goes to infinity. The HamiltoniarZp, predicts a i gj[vj+ (vj-rij)ri; /rﬁ]

positive infinite energy for such a situation and there is thus ~ ¢j(ri,.0)= ", Aj(r;, )= Cr.

some hope that it is can be useful in improving our qualita- ! .

tive understanding of the physics of long-range magnetic Inwherer” =r—T, andr|]—|r”| The Coulomb gauge is cho-

teractions. sen because it is only in this gauge that the Coulomb inter-
Some consequences of this Hamiltonian, corresponding taction is independent of the velocities.

the Darwin Lagrangian, are then indicated. It is pointed out The Lagrangian for particlé in the fields produced by

that it predicts a curious™ 2 repulsive force between moving particlesj is now

charged particles. After that, results for the conduction elec-

trons in a metal, previously found by the present auffét,

are reviewed and elaborated. Finally, we discuss applications

to the magnetism of plasmas. According to the second-order

Darwin Hamiltonian(1) magnetic structures are shown to whereU;; denotes

have a typical siz&k,,~1/\Ryp,, Wherep, is the effective +

number density of the effective current producing the magy; =q;¢,— U| A a9 Gi9Lvi-v; + (vi- &) (v;- e”)]

(4

Liy=Li— Ui, 5
(i) i kel ij ( )

netic field. rij 2¢c? rij
(6)
Il. THE DARWIN APPROXIMATION Here we have set;=r;; /r;; . From this one concludes that
AND ITS LAGRANGIAN the full Llagrangian of the system of particles is
Everyone knows that there usually is no need to mtroduce =(ZiLim22) zpUy)- If we define
the electric field explicitly in calculations involving the low-
energy behavior of charged particles; it is sufficient to use b= b An= 2 A,
the Coulomb potential energy. The reason is that, at low D T
energies, the electric field is completely determined by the a;
positions of the charged particles so that it does not have any UiE_E_ Uij=didi— =vi- A (7)
independent degrees of freedom. On the other hand, when 1D ¢
there are large accelerations the system will radiate and it igyq
necessary to include an independent field. When this happens
the energy of the particle system is no longer conserved and c b o]
no Lagrangian or Hamiltonian involving only the particles Ur=di¢i, Ui=- Evi'A(iw ®)

can exist.

It turns out that one can regard the Coulomb interaction aso that¢;, andA;, represent the internal scalar and vector
the zeroth-order term in an expansion in {senal) param-  potential, we can write the Darwin Lagrangian
eterv/c, wherev is a typical speed of the system aadhe
speed of light. Darwin realized that it is possible to carry this _ T _
expansion one step further and still have only particle de- L= (Li=3U)=2 L= 2 U;
grees of freedom in the problem. The next nonzero terms that
appear are of orderv(c)? and represent magnetic interac- More explicitly we can express it in the form
tions. In this way the Darwin approximation means that one
can include the effects of the magnetic field in the problem _ Qi9;
without introducing the magnetic field explicitly; all that is —Ei 2 Li= % rij Vo, (10
needed is a velocity-dependent particle-particle interaction.

We now proceed to sketch the derivation of the DarwinwhereVy is given by
Lagrangian. We follow the treatment by Landau and Lifshitz
[4,5]. Alternative derivations can be found[ib—3] and from Vv :12 UP— _ 12 Qi AL
a generalized point of view ifil2]. One can appreciate the D2 Uit A
subtlety of the derivation by studying Bethe and Hich’s
[17] slightly erroneous, independent rederivation. .S qidj[vi-vj+(vi-&))(vj-&;)]

The relativistic Lagrangian of a particle in an external & 2¢7r;;
electromagnetic field¢,A) is

9

1
Li—5(UF+UP)

11

and represents a magnetic interaction energy. The quantities

_ _ A, will be called theinternal vector potential
vj of O] ) S )
Li(r;,v;)=—m,c? 1—?—Qi¢+ Evi'A' ®) Physically, the approximation arises from the full La-

grangian of particles plus electromagnetic fields when the

independent degrees of freedom of the fields are neglected.
Now assume that the particle is moving in the field of an-This corresponds to radiation being negligible so that there
other particlej. Starting from the retarded potentials, ex- are no(nonvirtua) photons present. The field equations cor-
panding in terms of the small timg; /c, and finally intro-  responding to this Lagrangian can be shown to differ from
ducing the Coulomb gaug&/(- A=0) one finds that the field Maxwell’'s full equations in the omission of time derivatives
produced at by j is given by of the transverse electric fie[d3,14. As long as such de-
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rivatives are small, one can expect the Darwin approximation

to be good, independently of the valuewf. T=2 poi—L, (17)
The velocity-dependent part/p of L is called the '

Darwin(-Breit) term. That these relativistic terms are of im- \yhere the generalized momentum vector is

portance even in ordinary macroscopic physics when mag-

netic phenomena are considered has been shown by Coleman JL ( JL oL oL )

and Van VlecK8]. They are small when individual particles P=20 =\ 0 T oo (18
xi yi zi

. i . T
are considered, but easily integrate to macroscopic values !

[15]. The Darwin Lagrangiarf10) can, using very general |t we now use Eq(9) for L and(14) for the one-body gen-
arguments, be shown to be the best approximately relativistig,gjized momenta, we can write
Lagrangian for classical interacting point particles that gives

the Coulomb interaction in the static limit and that contains a aU;; aU;
vector interactior12,18. This type of relativistic Lagrang- P=m= 2 o= o (19
ian turns out to be singular on a surface in phase space JED o5 !
[18,19. _ o Using Eq.(13) for the one-body Hamiltonians, we then
Below we will concentrate on the nonrelativistic limit and et
disregard external fields and electrostatic interactigingse
being assumed to lead simply to charge neutralithe rel- U,
evant Lagrangian is in this case .%=Ei (T .ﬂ'i)+i2j Uij —Z -0 U (20
1
1 Qi ) - : I
LNRZEi Emivinr ivi'A(i) _ (12) for the many-body Hamiltonian. Note that this Hamiltonian

is expressed in terms of the one-body momemtinstead of
the correct many-body momentas).
It is obtained from the full Lagrangiafi0) if terms of order Using formula(19), we can express the one-body Hamil-
(v/c)? are neglected, except that the internal vector potentiajonian in terms of the generalized momentum
is considered to be blown up by the largeness of Avogadro’s
number. This is thus only consistent if there are many par-
ticles that contribute td\; (or, possibly, if there are very
small interparticle distancgs

The one-body Hamiltonian corresponding to a one-bodywe now assume that the velocity-dependent part of the in-

U,
Tty ) = T Pt — = (21)
I

LagrangianL; is, by definition, teraction issmall (or that. 77, is linear in ;)
Ti=(r )= vi— L. (13 : A.7;  dU;
S T m) = )+ (22
I 1
Using the Lagrangian of Eq3), the corresponding general-
ized one-body momentum is According to one of Hamilton’s equations we have
‘ D . o7,
oLy mu q'A. (14) — =y, (23

(717i

== ———+—
"oy, Vi-vilc? ¢©
this is also a purely algebraic reguéind using this we find
The explicit expression for the one-body Hamiltonian is thenﬁhat purely &g 9 g

7/.:m‘—cz+q.¢: \/m-zc4+cz ,,._EA 2+q.¢ Hi(ri ,am)~ (1 p_)+a_Ui.v. (24)
I m | 1 l c 157 LI 44 IV M ﬁvi [
(15

It should be stressed that smallness here means that
The next four sections are devoted to the Hamiltonian correldU;/dvi|<|py, i.e., weak velocity-dependent interaction. It
sponding to the many-body Lagrangian is then also consistent to replacewith p;, /m; to first order.
Inserting(24) into Eq. (20) we find, finally, that

IIl. HAMILTONIAN FOR WEAK VELOCITY-DEPENDENT
INTERACTIONS T~ () + 2 Uy
i <]

Assume that the one-body Lagrangian of particlés
Li=L;(r; ,v;) and that the total Lagrangian is of the type in =S i oy S A9
Eq. (9), where DIEAURIED o Ve (25
Uij=U;;(ri,r;,v;,05) (16 Note that this expression is the same that one would find in
the absence of velocity dependence. This result’oagrees
is the interaction of particleisandj. The Hamiltonian is, by with a general theorerf20], which states that a small addi-
definition, tion to the Lagrangian appears in the Hamiltonian with op-
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posite sign. It is, nevertheless, interesting to see explicitlthe internal electric potential and replace it, when necessary,

how this comes about in the present case. with its main effect: the requirement of charge neutrality.
The Darwin term[see Eq.(8)] has the property The Hamiltonian that we will consider is thus
&UP (o] D of 2 1 q;
I 3_U| i= (_EA(l) ’Ui:Ei Ui :ZVD’ 7522 mi204+02 p|_EIA(|)) +§EIU|A(|):|
(26) (32
so that Eq(20), which, assuming the explicit interactions of Combining Egs(29) and (14) and introducing the nota-
Sec. Il, reads tion
D
‘ _ 0iq; dU; _
T = HAr: )+ 2 v - D %
< El it m) .2<, i Vo El I Ui s(vi)="Y\ _C_I2:1/\/1+[pi_(Qi/C)A(i)]zl(mic)z,
(27) (33)
gives us we find that
, did;
=2, T, m)+ 2, — —Vp. 28 s(vi) di
Ei (i) ; Vo (28) b= (pi—E'A(i)>. (39)
|

T o s O 0 i s s nserte it Eq32) we i it we can e
PP ' ess it entirely in terms gf; andA;y. The result is

hand, it has not yet been expressed in terms of the corre®l
many-body canonical momengga, and this explains the sign

2

. . ; 1
change in front oW/p , as fo_rmu_las{24) and(26) show. Breit H= 2 [ \/mi204+ c? p— &A(i) + E[Qicpi A
[6,7] had trouble with this sign change of the velocity- i c
dependent interaction term, which shows that great care must >
be taken to ensure correct approximations. ai

PP —(AiA:)?] / \/ mZc+c?| pi— ;Am) ] (35
IV. EXACT HAMILTONIANS IN TERMS , o . _ ,
OF THE INTERNAL VECTOR POTENTIAL This expression is easily manipulated to the simple expres-
sion
In order to complete the derivation of the Darwin Hamil-

tonian starting from the exact expressi@8), we must now . 24 o of
express it entirely in terms of momengainstead of veloci- -%Zzi mic™+co| pi— EA(U P

ties. Using Eqs(19) and(7), we get

di \/ 2.4 <2
i - 57AG mic*+c
=D A (29 2¢ “N / '

for the Hamiltonian of the Darwin Lagrangian, no approxi-
mations made.

i 2
pi_EA(i)) , (36)

so Eq.(15) gives us

a 2 Expanding the square root, we find in the nonrelativistic
T, (P AG)) = \/mizC4+ c’lpi— ?I(A'I'A(i))} limit
p? a;
+Q; . (30 o R A
' R zl om;, 2micM An S

Formula(28) for the Darwin Hamiltonian can then be written
in the more explicit form compare Eq(12) for the corresponding Lagrangian. Here the
rest energy has been subtracted. If we go to second order in

2 - e ;
, Qi [(pi—g;Aiy/c)/(mic)]?, we get the quasirelativistic Hamil-
7/=Z ( \/mi2C4+C2 - o (A+AG) | +aid onian. '
1 1o a ) 3 1 of
+ EZ didiyt EEi Elvi'A(i)- (3D "%QR:L%{NR_Z 8mic? Cz{pﬁ—ZPiz(gpi'A(n)

a; a;

2 4
So far no approximations have been made in the derivation Qi
bp Elpi'A(i))(FA(i)) _(?A(”) } (39)

of the Hamiltonian from the Darwin Lagrangian. This ex-
pression, however, still contains velocities, explicitly in the
last sum and implicitly inAy . Note that we have not assumed tlog#\;)/c are small. As

In order to concentrate on essentials we assume, frormmentioned above, this should be avoided sidgg arises
now on, that there are no external fields. We also disregarffom a sum over all particles with terms that have the dis-

+2
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tance dependena:%‘1 . In a macroscopic system there isao
priori reason to assume that the result of such a summation is
small.

It is tempting to consider the terms containiAg, in (37)
to represent magnetic energy and, as will be discussed be-
low, it does represent the energy lowering associated with
the attraction of parallel currents. On the other hand, it is

dz
m,C

expressed in terms of the internal vector potentzaphase
space vector function af andp,) rather than the magnetic

field. What is usually called magnetic energy in textbooks is

a positive definite quantityfor a clear discussion, s¢21]);

magnetic energy is not normally a well defined concept un-

less made precise in some more or less arbitrary \@ah0].

In contrast, the Hamiltonian corresponding to the Darwin
Lagrangianis perfectly well defined and we will therefore
pursue it further below.

V. MOMENTUM FORM OF THE NONRELATIVISTIC
INTERNAL VECTOR POTENTIAL

In order to study the behavior of a nonrelativistic system

of charges due to its internal magnetic energy we should now

express this nonrelativistic Hamiltoni#87) as a function of
ri andp;. We must thus express;, as a function of these
variables. Following Kaufman and Soff22] we set

T..

1 1
ja= E[aﬂa'a;)%j]: m(ﬂﬂj%)a (39

and find thatA; is given by[see Egs(4), (7), and(34)]
An= 2 Tilapilo)= 2 Tyls(v))aip/(mjc)]
j(#1) j(#i)

_,2, Tij[s(vj)quA(j)/(mjcz)]- (40

j(#D)

This is an implicit expression for tha;,. It should be re-
membered that it containk; also via thes(v;) according to
formula (33). In the nonrelativistic limit this dependence
vanisheg s(v;)~1] and the expression can be written in the
matrix form

2 2
as an
1 Wle mchTlN
2 ) A
a1 T 1 an T A
m_lCZ 21 m_NCZ 2N 52)
: ; A
(N)
q3 T a3 T L
myc? N1 mocZ N2
1
A
Al
= 7, @
1
ANy

where we have defined

(42

HereN is the number of particles arfdand0 are the 33
unit matrix and zero matrix, respectively. For convenience
we define the BIX 3N symmetric matrices

0 T Tin
o | T2z O Ton
T=| . r
TNl TNZ O
g1 O 0
| 0 g 0
q= . ,
0 0 anl
ml O 0
0 m 0
m= ) (43
0 © myl
and, in terms of these,
R=g%m-1c 2,U=TR. (44)
If we also define the B X1 matrices
1
Ay A P1
.| A .| A .| p
A=| TP, A= TP, p=| |, @
ANy A(lN) Pn
we can rewrite Eq(41) in the matrix form
(1+Tg?m ¢ 2)A=(1+TR)A=(1+U)A=AL
(46)

Here 1 is the AN X 3N unit matrix. Equation(42) gives us
the expression foAl in terms ofU andp,

Al=Tgm ¢~ p=Uq lcp. (47)

Using this formula46) can be solved foA in terms ofp as
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“cp). (48) (A” LTRT (GimLc~1p)

This gives us the desired formula for thg, in terms of the

1 . o o -
p,. One notes that = E(A"*l)TR(T‘ﬁr‘ﬁ* c p). (55)
im U@ tep) for |U]<1 49 According to Eq.(47) we finally get
g lcp for |U|>1 o?

1. = -
=S (A HTRAN= 2 S——=AL ALY (56)

if we denote by|U|| the norm of the matrix. 2mie
If we assume thalt) is small we can expand E¢48) and, We have thus proved that, far>1, we have
if we defineA* by o
_E A= 2 S AL 67

o . - 2m c 2m;c
Ar= (=DM HU)NG tep) (50)
Using this, the corresponding term in the Hamiltoni@&)
we get gives us
-3 A s T S A
A=1
- _E Al —Zq' Al A

This gives us a formal solution of the problem of expressing i Ay~ m;c Q)

the internal vector potential in terms of the generalized mo-
menta. Trubnikov and Kosachg®5] approached the prob-

lem of finding the Hamiltonian of the Darwin Lagrangian by ZA(l) ( E A(l)” (58)
deriving an expansion of; in terms ofp;. In the present

treatment, based on the Hamiltoniédv), that expansion is |f we now define

not needed.

2

A=A — AL =D AN, 59
VI. THE NONRELATIVISTIC HAMILTONIAN AR xzz 0 ®9
IN TERMS OF GENERALIZED MOMENTA o o _
o o the nonrelativistic Hamiltonia37) can be written
Let us now return to the nonrelativistic Hamiltonian. Con-

sider the interaction term in it. By means of formykd) it ‘ p; ai 1 q?
can be regarded as a sum of terms of the type %NR:Z 2m mpi'A( )t Z—ZA(.) A(.
Qi q?
[ <_><_>_ g I
IN=— 2 TP A(”I)———(A")T( lc™1p). (52 +W6A(i)-A(li) (60)
Here a superscriptT indicates matrix transposition. Using In conclusion, we will write this
formula (50) this gives Ting=Tlp+ Tyt ST =Tpp+ 87, (6D
\ 1 T - g1 where the two first terms if60) constitute the “traditional”
I"==3 (=D (UG "ep] (@M “c p) Darwin Hamiltonian
1 p? ai
« « - _ 1~ 1
=~ S[- (-1 204G *ep)1"(@Mm e ). Ho=THVo=2 | 5= 5 oPi-Al)
(53 s QALP-P (B8 (- €]
2m i< 2m;m, c? rij

Now using BC)T=CTB", we find
g BC) 62)

As the derivation above shows, the third term(@@), which

AN—1NT)T <—><—>—1 -1
(A ) UN@m-cp). (54) we can split into two- and three-body interactions as
Since R and T both are symmetric, we find that : q| 1. ~
UT=(TR)"=RT and we get 2 EI 2m;c? Wy et s 63
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where If we set
2.2 2 2 2.2
gid;  pi+3(p-ey) qia; 1
T 9= 64 )= R
22 2 ammZc’ 2 (64) e(ryj) mm,c? 42" (68)
and we can write this, interchanging dummy indices and denot-
ing the angle betweep, andeg; by 6;;, as
2
Y Qi , 90k
-7523—2i 2m 2, ijmkc2(Tijpj)'(Tikpk) (65) / i
%22=§i) o 2 €(r)(1+3c0$6y). (69

is due to second-order terms in the expansib). The
fourth term

2
e I
ST = Z o

1
22 0 A

(66)

is thus due to the remaining third- and higher-order terms in To2m;

the expansion.

We thus now have a nonrelativistic Hamiltonian derived
from the Darwin approximation of the retarded potentials

i (#F0)

If we now absorb this into the kinetic energy we can rewrite
it

2
T =T+ H =, P 1+ >, e(r)(1+3cog6;)

J(#)
2

p.

=Zi Vi, (70)

that describes the magnetic interaction of charged particles. _
It has not been assumed that the magnetic effects are smawhere we have defined
Its practical feasibility will of course depend on whether one

can neglect the unknown higher-order teréi¥ and thus
use the HamiltonianZ,, of Eq. (1). One notes that the

gualitative meaning of the interaction term in the traditional

Darwin Hamiltonian(62), the attraction of parallel currents,
is opposite that of the ter#, . Its secondthree-body part,
represents a repulsion of parallel currents.

Alternative derivations of the tradition&implified) Dar-
win Hamiltonian(62) can be found irf1,2,4,23. In atomic
physics the Darwin term is often called the Brdt7] term;
for a derivation from modern quantum electrodynamics, se
[23]. In the past only Trubnikov and Kosach¢y5] have
seriously considered improvements(62), but the resulfl)
appears to be new.

VII. PECULIAR REPULSIVE R~3% FORCE

The termsVp and.7,; in .7 \g both are zero if there is no

e

Vi(r)= 2, e(rij)(1+3cod6;)
i (#D

RiR;
= > —7(1+3cod4;).
J

2

=i 4 (73
HereRiEq?/(micz) are classical particle radii; for electrons
this radius isRy=e%/(mc?)~2.82x10 > m.

We thus see that when there are moving charged particles
in a system there arisém this formalism anr ~2 repulsive
force between the parts that is proportional to the kinetic
energy of the particles. A large number of questions then
arises. Is this a correct physical result? What observable con-
sequences might this force have? Can they be experimentally
verified or falsified? Superficially it seems as if this force
should have its largest consequences for stellar interiors, if

net current distribution. In this case the main effect predicted@ny- For the moment we have no answers to these questions.

by .7Z\r comes from the two-body part of7, as given in
Eq. (64). It can be rewritten as

1 q7a’

T po= 2+3(p:-e;)2].
2= 2 o 2 ammictrz [P+ 3(pe)’]
(67)
|
% |\

(A(1)> m202 12

Ac2) a7 T 1

_Zmlc 21

VIII. THE TWO-PARTICLE NONRELATIVISTIC
HAMILTONIAN

In the case of two particles it is possible to derive an exact
nonrelativistic Hamiltonian. In this case it is possible, and
meaningful, to start from formul&8) in the form

o %L\
myc? 12| | g™

ai T 0 ip
m,c? 2 q

whereT o= T,1=(1+e,6,9)/(2r15), and do the explicit matrix inversion and multiplication. After some calculation this gives
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2
q; 1 1+2€(r) c
- 1+ ee\ — - —
(A(l)) . » €(r) 1-4e(r) |  myC? Zr( * 1—4e(n)° || g™ 23
A [1-=(n)] a1 1+2€(r) 14 3 ) c ’ 73
m,c2 2r 1—de(n)S () 1—de(r)F 0.2

wherer =r,,, e=e;,, and we defined in Eq. (68). Using
this and Eq(37), we get the “exact” two-body, nonrelativ-
istic, magnetic Hamiltonian, in the form

3e(r)
Aol i'e>2)

1+2() )

K= ———

t 7. (r)(pl e)(p-€)

(74)

after some further, elementary, calculations. The correspon
ing relativistic Hamiltonian cannot be calculated in closed

a screened Coulomb repulsion, there is nothing remarkable
about such a velocity-dependent interaction since there is a
preferred rest frame.

Consider the free Fermi electron gas and assume that all
states with|k| <kg, the Fermi wave number, are filled, but
that there are two electrons on the Fermi surface with
|k|=kg . All the electrons inside the Fermi surface have zero
net momentum and current density, so only the two on the
surface contribute. We now assume that the motion of these
is described by the Hamiltoniaf77). Clearly the lowest en-
ergy is obtained when they have a maximum center-of-mass
momentum and this is the case when they h@sasentially
&he same momentum=7#k=7krg,. As an ansatz for the
wave function we thus use

form, but some exact results on the relativistic two-body

problem with magnetic interactions have been obtained by
Barut and Craig24]. Other studies of the relativistic two-

1
Y (R,r)= Fexp(ik- ro)expik-ro)d(r)

body problem can be found in the works of Van Alstine and

Crater[25,26, Landau and Lifshit44], and Achieser and
BerestestezKi27], who treat the positronium problem.
Distance scales at whick(r) is of importance require

= ElgexinK,:eK- R)®(r), (78)

very high energy. One can thus justly argue that, in the nonwhere®(r) i.s a symmetric function since the electrons must
relativistic limit that we are considering, we can just as wellhave opposite spins.

sete(r)=0 in (74). Dettwiller [28] used this approximation

If our ansatz is consistent the relative momentoimust

to study the classical hydrogen atom. If we do this and als¢#¢ much smaller than the common plane wave momentum
assume that both particles are electrons we get the HamiR, so we neglect the last term in the Hamiltoni@) com-

tonian

eZ

2
1
=2, 5Pl Sz [P Pet (P (P @) (79

2m2c?r

If we make the canonical transformation

1
Rzz(rl‘”z)a r=(ry—rp), (76)
this Hamiltonian becomes
P2 P e’ P2+ (P-e)?
H= + -
2(2m) 2(m/2) 8m-c r
e p’+(p-e?
2m2C2 r . (77)

pared to the second to last. If we do this our ansatz leads to
the Schrdinger equation

2 %

h
28— =——= V23— mc2

S(m2) [1+c0526]

(r)=E®(r),
(79

where&(’FEﬁzkE/(Zm) is the Fermi energy, for the relative
motion.

To roughly estimate the properties of the solution we re-
place 1+cogd by its spherical averageicos9=4/3. If
we further sesAE=E—2# we get the hydrogenlike equa-
tion

ﬁ2
- 2(m/2)

47 €?

2_ _
v 3mc r

O(r)=AED(r). (80

Because of the ! character of the potential this equation
has bound states independently of the weakness of the inter-
action. The Bohr radius and energy of the ground state of

This Hamiltonian has the peculiar property that the center ofhis equation are
mass momentum acts as an attractive coupling parameter. If

one adds the Coulomb repulsi@d/r, one sees that it will

always dominate over this attraction, so in vacuum this leads
only to the well-known stabilization of a relativistic beam of

charged particlessee, e.9.[29]). In a neutral medium, with

3mc?

27 ——Rg~8X10'Ry

Rpr= (82)

and
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8 [e24:1(mcP)]? 1o i.e., a given numbeN of electrons, it is, however, very un-
“9  pz “A4X107En, (82 likely that the electrons exactly fill the “shell(Fermi sur-
face with |k|=ke. The number of possible states on the

respectively, where the numerical values refer to a typicaFermi surface is
metal in which Zr~10eV andRg and Ey are the usual

AE=

Bo_hr-radius and ground-state energy of th_e hydrogen atom. NS:Ek§L2=6—WN (86)
(Minor errors in the corresponding results[it6] have been ™ Kel
corrected.

and an important parameter that characterizes the ground

IX. MAGNETIC INTERACTIONS state of the gas is then the fraction

BETWEEN CONDUCTION ELECTRONS y= Nc/Ns 87
we have seen that the magnetic Ham|l_ton|ans_ have 88f these that are filled. Hemd, is the number of electrons on
their first-order term the Darwin term, an interaction that

lowers the energy when currents are parallel. This means th%:t]e Fermi surfacgthe “zero temperature conduction” elec-

- . -~ frong. Thus, apart from the Fermi energgr wave number
in any system where charged particles a!rea}dy_ have klrjetltche ?ﬁoun d stgte is characterized by &]@é paramgzteF(?r
energy(as in a metal because of the Pauli principle and in a —0 or y=1 the ground state is nondegenerate, but for
plasma because of the temperajitte energy is lowered if 7 Y ’

9 no _
the motions are correlated in such a way that a collectiv®e" V?Ilées ofy it is degeneratey=z corresponding to
current results. maximal degeneracy.

Heisenberg, long ago, suggested that current flows in the When the Darwin magnetic interaction energy is included

superconducting ground staf@0]. The mechanism sug- " the Hamiltonian all the various degenerate states, corre-
gested by Heisenberg was, however, not convincing. Th ponding to different distributions of thé. k vectors on the

idea that superconductivity might be due to magnetic inter) ermi surface, are no longer degenerate. Instead a maximally

actions was first advanced long ago by Frerfad]. Fren- anigotr'opic': distribution will minimize 'the energy since 'such
kel's mechanism was wrong, however, as shown by Beth& distribution will corres_pond to maX|m§1I current density. It
and Frdnlich [17]. Later Welker[32] speculated in this di- IS easy to ma_ke an estimate .Of the_ optimum energy that the
rection and in33] suggested that the magnetic attraction OfDarwm term in the Hamiltonian might produce and Esse
parallel currents might be responsible for superconductivity.[l.ﬁ] has shown th_at, foy value_s near 1/2, the energy low-
Welker's specific calculations were, however, also Wrongerlng per conduction electron is at best
and at that point the scientific community seems to have E

given up the idea. None of the above authors seem to have Ap=— —2~1.4Rokg % . (89)
been aware of the Darwin Hamiltonigeven if Bethe and N

Frohlich came close to rediscovering) iand without a Here Ry=e2/md is the classical electron radius aig is

Hamiltonian it is very hard to do good quantum mechanics he expectation value of the Darwin tei in the Hamil

The present author investigated the problem of the metalli% . ) D
ground state using the Darwin Hamiltonian and the free elecontan for a Hartree wave function consisting of a product of
tron gas model. A rather elementary stydy] then shows one-electron wave functior(3).

that the maximum energy lowerir{ger conduction electrgn When nu_mencal values are inserted it is found that for-
that can be obtained in fact agrees quite well with the ob-mUIa (88) gives values that agree closely with the energy

served energy gap in low-temperature superconductors. Th%ﬁpzrgsrslgﬁgﬁg W:rh j%%?\rtgo?ﬁ:tatlxgyr;oar lr?(\a,\{i-éem?:r?égcr)i
investigation is reviewed briefly below. P - AIY Y

The ground state of the metallic conduction electrons re:ShOUId b'e' too weak or otherwise unsuitable to explain super-
garded as a Fermi, free electron gas, is normally considere%ondqcnv'ty are thus wrong. On the other hand, forn{&@
to be characterized by a single parameter, the Fermi ener ntains no fr_ee parameters and would thus be falsme_d_by
. If we use periodigBom—von Kaman) boundary con- e recently discovered hlgh—tempgrature _superconductlwty.
ditions. the allowed states are It can be shown,_however, t.hat _the interaction of the c_onduc—
' tion electrons with the lattice is qualitatively much like a
1 magnetic interactiorj16]. These two effects are therefore
Ji(r) = —explik;- 1), (83 likely to both contribute to the phenomenon.

JL®

where the wave number vectdtsmust obey

X. STATISTICAL MECHANICS AND MAGNETISM

Early studies of the interaction of magnetism with matter,
2@ ) as reviewed by Van Vleck34], came to the conclusion that,
ki:T(niX MNiysNiz) Wit Ni,Niy,niz=0,£1,22, ... according to classical statistical mechanics, matter does not
(84) interact with the magnetic fieldit has zero susceptibilijy
and that therefore all magnetic effects must be explained by
For a given density quantum mechanics. This finding is a bit worrying since it is
found empirically that cosmic plasmas nearly always are
connected with intense magnetic activiib], while theories

1
3__ " 13
NIL =32 ke (85 of plasma physics usually do not take account of quantum

3T
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effects. Plasma phenomena, on the other hand, are rarely XI. MAGNETIC SELF-ENERGY OF ROTATING
equilibrium phenomena so the discrepancy is not glaring. SPHERICAL CURRENT DISTRIBUTION

More relevantly, however, the zero classical susceptibility i1 o the Darwin energy is a perturbation, as it is in

proofs did not take account of the Darwin magnetic 'merac'metals, it is enough to consider the Darwin Hamiltonié®).

tion. Since this interaction lowers the energy for parallel cur-t powever, we envisage a situation where the magnetic en-
rents it seems to be a promising candidate for an explanatio&gy according to the Darwin term seems to diverge, we
of cosmic magnetic fields via classical statistical mechanicsmyst also include, at least, the next term in the expansion of
We will look into this a bit more closely below. Agy and use the “magnetic” Hamiltonia?p,, as defined
Using classical statistical mechanics one can also showy Eqgs.(1) and (2). In this section we calculate the contri-
that the current density must be zero; $86]. This again  pution to the three terms o7y, from the current arising
neglects magnetic interactions and is contrary to Heisenfrom a rotating spherical distribution of charge. We assume
berg’s suggestion of ground-state curref@8] and the find-  charge neutrality, i.e., that there is a compensating immobile
ings in [16] reviewed in Sec. IX. London also claims that distribution of the opposite charge.
Bethe and Fiblich [17] showed that this still holds if mag- Assume that the number density
netic interactions are included, but this is clearly not correct.

Bethe and Fiblich studied only the effect of the magnetic N e
(Darwin) interaction on the effective mass of the electron o= 47R%/3 i r= (89)
and this effect is, of course, completely negligible. In con- : .

0 otherwise

clusion thus, when magnetic interactions are included, cur-

rents are actually not forbidden, but, on the contrary, are in . . .
. : . , of charged particles with chargeand massan rotates with

good agreement with classical statistical mechanics, as Iongn ular velocit

as there is kinetic energy present in the system. 9 y

Krizan and Havaq37] developed statistical mechanics

including the(first-ordey Darwin term in the Hamiltonian.

They applied it to plasmas, but had to exclude long-rangerhis means that we assume the momenta to be given by

interactions for technical reasons. They try to argue that

these should be small, but that is not convincing. On the pi=M@XT; 91

contrary, the(first-ordey Darwin term will diverge if there is

a bulk current density over an extended volume. This diverand that there is a current distribution

gence was called “magnetische Katastrophe” by Welker )

[32]. In metals the divergence is prevented by the current j(r)=eppoXxr (92)

density being essentially two dimensiorjdb|, but in plas-

mas there is no such restriction. Trubnikov and Kosache

[15] managed to derive results for plasmas that do not rel

on the(simplified) Darwin Hamiltonian(61) but that include

0= we,. (90)

\yhat is proportional to the momentum distribution. From this
)yve can calculate the vector potential

Lo ) D . 10 (") Ne 3r2\1
the full Hamiltonian without approximation. There is, how- A(n=—| —dV’ :_( 1—— _2> —(wXr)
ever, reason to be suspicious about all thermodynamics deal- c) [r=r'| 2R SR c
ing with magnetic effects caused by the Darwin Hamiltonian 2715
since the interaction is long range. It is one of the fundamen- = §(§R2_ rz)j(r)_ (93

tal assumptions of statistical physics that subsystems are ap-

z;%xg?n?jtili)f/sﬂﬁzs[%%j or "quasiclosed,” as discussed by I‘an'This vector potential is chosen to match,ratR, one that

The electrostatic interaction is also long range, but in thig €S to zero as—ce. The calculation is elementary, but

: - . some relevant formulas can be found[#2]. We see that
case the ngye screening makes it e_ffectlvely_ short .ranng-A:O so that we are automatically in[thg Coulomb gauge
For magnetism there is no analog to this screening. This may The t,otal kinetic energy can be calculated to be '

be one reason why plasmas rarely appear to be near thermal

equilibrium. | have not been able to find any analysis of

these problems in the literature. 10 , M ) 1 )
Kaufman and Sod§22] also made a study of statistical T= ﬁgl P :EJ (@Xr)"ppdV=zmN(Rw)" (94)

mechanics that included the Darwin term. They, however,

did not apply it to plasmas. Many authors have applied the,nq the Darwin magnetic self-energy of this current distribu-

Darwin approximation to plasmas via particle code models;q, is approximately

[13,14,39, i.e., by directly integrating the equations of mo-

tion. It is, however, very difficult to draw general conclu-

sions from specific numerical simulations. 1

Vp=—5—2, ep-Ai= j(r-A(rdv

An alternative velocity-dependent interaction between 2mcS5 2c
charged patrticles, suggested by Weber, has been ruled out
[40] as leading to unphysical results when applied to plasma _ 2 (Ne)?(wR)|? (95
physics. The Darwin interaction, on the other hand, agrees 35 R c/’

well with known plasma phenomena as well as with other
aspects of charged particle dynami&9,41]. Here we assume tha@t~A?l. Finally, we get
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XIl. CONCLUSION

2 2

e e
Toy=m—s A--A-=—fAr2 dv _ L . .
2 2m02§i: OO om 2 AP In mechanics the Hamiltonian formalism often seems like

iz 2 a purely formal, and trivial, reformulation of the Lagrangian
3 e'N°w one. In quantum mechanics and statistical mechanics, on the

" 175 mc’ (98 Gther hand, the Hamiltonian is crucial for obtaining energy
eigenstates and statistical equilibrium distributions. The
for the diamagnetic term. (relativistic or nonrelativistic Darwin Lagrangian is one of
For the total energy, kinetic plus magnetic, one thus find$he few examples for which the reformulation is nontrivial
thatE= 7Zp,=T+Vp+.7, is and for which no closed form Hamiltonian is known. It

seems likely that no such closed form Hamiltonian can be
found, at least not in the relativistic case. This paper has

1 2/ R 3 R.\2 improved the situation for the nonrelativistic case. These for-
E=—mN(Rw)?/ 1— _< N—2 |+ _( N_O) } 9 mal difficulties probably reflect corresponding subtleties in
5 7\ " RJ 35| R the physical problem.

Several facts regarding the Hamiltonian corresponding to
Here we have introduced the notation the Darwin Lagrangian have been presented. The general
result for weak velocity-dependent interactions as given in
Egs. (16)—(25) appears to be new. The same goes for the
e? relativistic result(36) and the quasirelativistic Hamiltonian
Ro=r2 (98 (38).
The matrix treatment of the problem of finding the inter-
for the classical electron radius. If we optimize this energynal vector potent]al as a function of the gengrahzec_i mo-

. ; ; : menta, the explicit formuld48), and the expansiofb0) is
V_V'th respect tq the @r_nensmnless parametemNRy/R We  jiterent from those previously presented. The most useful
find that there is a minimum ag,=5/3 and the value of the 4 ;tcome of the matrix formalism, namely, the result that the
energy at this minimum is second-order term beyond the traditional Darwin Hamil-
tonian can be obtained in closed form, is one of the most
elegant results of this paper.

One notes that the qualitative meaning of the Darwin
Hamiltonian, the energy lowering due to the attraction of
parallel currents, is opposite to that of the present second-
Evidently the kinetic energy of the moving particles is re-order term. The unphysical divergence of this energy lower-
duced by roughly 24%, by the magnetic self-energy, if theind, as predicted by the traditional Darwin Hamiltonian for
motion causes flow of an electric current. constant current densities, is thus prevented by the present

The quantityx=NR,/R corresponds to a given number term.
of particles per unit length. If one assumes instead that there The parallel current attraction energy lowering is an effect
is a constant number densipy, of particles that contributes that is not manifest in the energy when it is expressed in
to the effective current density it is more interesting to ex-terms of velocities; see E28). This means that this is a
pressx in terms of p,. This givesx=p,47R?Ry/3. The rather subtle effect related to the behavior of phase space
respond to roughly to the length scale not well understood or discussed, in spite of the fact that the

attraction of parallel currents is one of the more fundamental

elementary facts of electromagnetism and represents one

way of measuring current accurately. Extensive arguments
) (100 thatthis attraction manifests itself physically as the attractive
VRopn force behind low-temperature superconductivity have been

published before by the present authbé] and are thus only

This result that there is a characteristic length scale assocdbriefly touched upon in this paper. That this attraction also
ated with the magnetic activity seems to be a new predictiomight be responsible for the abundance and persistence of
of the Hamiltonian(1). One cannot, of course, be completely cosmic magnetic fields seems to be a new point of view. It is
sure that this is not an artifact of the second-order approxihoped that it will contribute to a deeper understanding of

Eqi =1—6(£mN(Rw)2>=O 7621 (99
min 21 5 . .

1

Rm~

mation that vanishes in a more exact treatment. these, in general, quite difficult problems.
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